Using a Rapid, Accurate, and Cost-Effective QiaXcel Advanced Platform for Microsatellite Instability Detection in Colorectal Carcinoma in North of Iraq

Authors

  • Nigar A Abdalrahman Molecular Biologist at Hiwa Hematology,oncology Hospital, Sulaymaniyah, Kurdistan region, Iraq
  • Dlnya A Mohamad Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan region, Iraq.

DOI:

https://doi.org/10.22317/jcms.v10i1.1469

Keywords:

colorectal cancer, Microsatellites, MSI, QiaXcel advanced.

Abstract

Objective: The objective of this investigation was to address the limitations of the most popular microsatellite instability (MSI) detection
method, which uses fluorescent capillary sequencers.

Methods: Using the QiaXcel Advanced system (Qiagen, Hilden, Germany) based on capillary electrophoresis, the MSI status of 53 Iraqi
Formalin Fixed Paraffin Embedded (FFPE) CRC samples was examined. BAT25, BAT26, BAT40, D2S123, D5S346, D17S250, NR21, NR22, NR27,
Mycl1, TPOX, and TH01 were among the panel of twelve polymorphic markers that were used.

Results: Using a QiaXcel Advanced platform was successfully established to determine the MSI status. Among 53 cases of CRC, MSI was
observed in 12 cases (22.64%) who had MSI-H.


Conclusion: Due to MSI’s significance in the progression of cancer, this quick and inexpensive PCR-based technique can enhance the
clinical management of CRC, which may further alter the patient’s outcome.

References

Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel). 2017;8(9).

Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int. 2020;20:16.

Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435-45.

Xue D, Zhang T, Liu JX. Microsatellite evidence for high frequency of multiple paternity in the marine gastropod Rapana venosa. PLoS One. 2014;9(1):e86508.

Dean DA, Wadl PA, Hadziabdic D, Wang X, Trigiano RN. Analyzing microsatellites using the QIAxcel system. Methods Mol Biol. 2013;1006:223-43.

Jiricny J. Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012633.

Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7(5):335-46.

Buza N, Ziai J, Hui P. Mismatch repair deficiency testing in clinical practice. Expert Rev Mol Diagn. 2016;16(5):591-604.

Pellat A, Netter J, Perkins G, Cohen R, Coulet F, Parc Y, et al. [Lynch syndrome: What is new?]. Bull Cancer. 2019;106(7-8):647-55.

van Lier MG, Wagner A, van Leerdam ME, Biermann K, Kuipers EJ, Steyerberg EW, et al. A review on the molecular diagnostics of Lynch syndrome: a central role for the pathology laboratory. J Cell Mol Med. 2010;14(1-2):181-97.

Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079-99.

Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85-98.

Bettstetter M, Dechant S, Ruemmele P, Grabowski M, Keller G, Holinski-Feder E, et al. Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin Cancer Res. 2007;13(11):3221-8.

Wild PJ, Reichle A, Andreesen R, Rockelein G, Dietmaier W, Ruschoff J, et al. Microsatellite instability predicts poor short-term survival in patients with advanced breast cancer after high-dose chemotherapy and autologous stem-cell transplantation. Clin Cancer Res. 2004;10(2):556-64.

Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609-18.

Funkhouser WK, Jr., Lubin IM, Monzon FA, Zehnbauer BA, Evans JP, Ogino S, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14(2):91-103.

Ryan E, Sheahan K, Creavin B, Mohan HM, Winter DC. The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol. 2017;116:38-57.

Bacher JW, Flanagan LA, Smalley RL, Nassif NA, Burgart LJ, Halberg RB, et al. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers. 2004;20(4-5):237-50.

Cheah PL, Li J, Looi LM, Koh CC, Lau TP, Chang SW, et al. Screening for microsatellite instability in colorectal carcinoma: Practical utility of immunohistochemistry and PCR with fragment analysis in a diagnostic histopathology setting. Malays J Pathol. 2019;41(2):91-100.

Arulananda S, Thapa B, Walkiewicz M, Zapparoli GV, Williams DS, Dobrovic A, et al. Mismatch Repair Protein Defects and Microsatellite Instability in Malignant Pleural Mesothelioma. J Thorac Oncol. 2018;13(10):1588-94.

Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):1804-11.

Buhard O, Cattaneo F, Wong YF, Yim SF, Friedman E, Flejou JF, et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol. 2006;24(2):241-51.

Hendriks YM, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127(1):17-25.

Hartmann A, Zanardo L, Bocker-Edmonston T, Blaszyk H, Dietmaier W, Stoehr R, et al. Frequent microsatellite instability in sporadic tumors of the upper urinary tract. Cancer Res. 2002;62(23):6796-802.

Kuismanen SA, Moisio AL, Schweizer P, Truninger K, Salovaara R, Arola J, et al. Endometrial and colorectal tumors from patients with hereditary nonpolyposis colon cancer display different patterns of microsatellite instability. Am J Pathol. 2002;160(6):1953-8.

Pagin A, Zerimech F, Leclerc J, Wacrenier A, Lejeune S, Descarpentries C, et al. Evaluation of a new panel of six mononucleotide repeat markers for the detection of DNA mismatch repair-deficient tumours. Br J Cancer. 2013;108(10):2079-87.

Kambara T, Sharp GB, Nagasaka T, Takeda M, Sasamoto H, Nakagawa H, et al. Allelic loss of a common microsatellite marker MYCL1: a useful prognostic factor of poor outcomes in colorectal cancer. Clin Cancer Res. 2004;10(5):1758-63.

Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 1997;57(21):4749-56.

Kambara T, Matsubara N, Nakagawa H, Notohara K, Nagasaka T, Yoshino T, et al. High frequency of low-level microsatellite instability in early colorectal cancer. Cancer Res. 2001;61(21):7743-6.

Pecorino B, Rubino C, Guardala VF, Galia A, Scollo P. Genetic screening in young women diagnosed with endometrial cancer. J Gynecol Oncol. 2017;28(1):e4.

Forster I, Brockmann M, Schildgen O, Schildgen V. Microsatellite instability testing in colorectal cancer using the QiaXcel advanced platform. BMC Cancer. 2018;18(1):484.

Vatrano S, Pettinato A, Randazzo V, Zagami M, Agueli C, Cannella S, et al. Diagnostic test assessment. Validation study of an alternative system to detect microsatellite instability in colorectal carcinoma. Pathologica. 2020;112(4):178-83.

Berg KD, Glaser CL, Thompson RE, Hamilton SR, Griffin CA, Eshleman JR. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J Mol Diagn. 2000;2(1):20-8.

Odenthal M, Barta N, Lohfink D, Drebber U, Schulze F, Dienes HP, et al. Analysis of microsatellite instability in colorectal carcinoma by microfluidic-based chip electrophoresis. J Clin Pathol. 2009;62(9):850-2.

Sakaoka K, Suzuki I, Kasugai N, Fukumoto Y. Paternity testing using microsatellite DNA markers in captive Adelie penguins (Pygoscelis adeliae). Zoo Biol. 2014;33(5):463-70.

Song SD, Drew RA, Hughes JM. Multiple paternity in a natural population of a wild tobacco fly, Bactrocera cacuminata (Diptera: Tephritidae), assessed by microsatellite DNA markers. Mol Ecol. 2007;16(11):2353-61.

Downloads

Published

2024-02-26

How to Cite

Abdalrahman, N. A. ., & Mohamad, D. A. . (2024). Using a Rapid, Accurate, and Cost-Effective QiaXcel Advanced Platform for Microsatellite Instability Detection in Colorectal Carcinoma in North of Iraq. Journal of Contemporary Medical Sciences, 10(1). https://doi.org/10.22317/jcms.v10i1.1469