Histological impact of nutritional style alteration in mice

  • Khalid M Salih Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
  • Jamela Jouda Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
  • Shatha Salah Asad
  • Yusur Falah Faraj National Center of Hematology, Mustansiriyah University, Baghdad, Iraq.
  • Iyden Kamil Mohammed Department of Biomedical, College of Al-Khawarzmy Engineering, Baghdad university, Baghdad, Iraq.
  • Ali Sameer Abudlghani Altaee Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.


Objectives: It is well established that diet and lifestyle are important in maintenance of healthy. Transition from a plant-based diet mostly to a high-calorie diet of animal products might raise the chronic diseases which called “degenerative”. This work aimed to study the histopathological effect of transition from complete plant-based diet to 10% animal products (sheep’s brain) on various body organs of mice.
Methods: Eight-week old Balb/c male mice were divided into 2 groups (n=8); the first is restricted group in which mice were fed on restricted diet containing 10% of sheep’s brain homogenate, while the second is the control group in which fed on ad libitum on the diet for 7 days. During the duration of experiment, body weight and the amount of food intake were recorded daily, then at the end of experiment, all mice were sacrificed and various organs were obtained and processed for histopathological study.
Results: the results showed that food intake by each mouse of restricted group are significantly lower than in control group. Although the mean of body weight in both groups revealed non-significant difference, the relative weight of various organs showed significant differences. On the other hand, sever histological changes were detected in all studied organs sections of restricted group.
Conclusion: It can be concluded that changing in nutritional style rather than conventional diet play a crucial role in modifying the architectural aspects of different organs at tissue level. Therefore, these findings need further investigation at cellular, physiological, and molecular levels.
share this Article by


Leslie W, Hankey C. Aging, Nutritional Status and Health. Healthcare (Basel). [Review]. 2015 Jul 30;3(3):648-58. http://www.ncbi.nlm.nih.gov/pubmed/27417787
2. Nations U. untted Nations 2013 World Population Aging Report. (accessed on 27 July 2015).2015.
3. Ahmed FE. Effect of nutrition on the health of the elderly. J Am Diet Assoc. [Review]. 1992 Sep;92(9):1102-8. http://www.ncbi.nlm.nih.gov/pubmed/1512369
4. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002 Jul;76(1):5-56. http://www.ncbi.nlm.nih.gov/pubmed/12081815
5. Holmes MD, Liu S, Hankinson SE, Colditz GA, Hunter DJ, Willett WC. Dietary carbohydrates, fiber, and breast cancer risk. Am J Epidemiol. [Research Support, U.S. Gov't, P.H.S.]. 2004 Apr 15;159(8):732-9. http://www.ncbi.nlm.nih.gov/pubmed/15051582
6. Slattery ML, Curtin KP, Edwards SL, Schaffer DM. Plant foods, fiber, and rectal cancer. Am J Clin Nutr. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. 2004 Feb;79(2):274-81. http://www.ncbi.nlm.nih.gov/pubmed/14749234
7. Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN. Eating patterns and risk of colon cancer. Am J Epidemiol. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. 1998 Jul 1;148(1):4-16. http://www.ncbi.nlm.nih.gov/pubmed/9663397
8. Norat T, Lukanova A, Ferrari P, Riboli E. Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer. [Meta-Analysis Research Support, Non-U.S. Gov't]. 2002 Mar 10;98(2):241-56. http://www.ncbi.nlm.nih.gov/pubmed/11857415
9. London SJ, Sacks FM, Stampfer MJ, Henderson IC, Maclure M, Tomita A, et al. Fatty acid composition of the subcutaneous adipose tissue and risk of proliferative benign breast disease and breast cancer. J Natl Cancer Inst. [Research Support, U.S. Gov't, P.H.S.]. 1993 May 19;85(10):785-93. http://www.ncbi.nlm.nih.gov/pubmed/8487323
10. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, et al. Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst. [Multicenter Study Research Support, Non-U.S. Gov't]. 2005 Jun 15;97(12):906-16. http://www.ncbi.nlm.nih.gov/pubmed/15956652
11. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One. [Meta-Analysis Research Support, Non-U.S. Gov't]. 2011;6(6):e20456. http://www.ncbi.nlm.nih.gov/pubmed/21674008
12. Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. [Research Support, N.I.H., Intramural]. 2010 Mar 15;70(6):2406-14. http://www.ncbi.nlm.nih.gov/pubmed/20215514
13. Luca F, Perry GH, Di Rienzo A. Evolutionary adaptations to dietary changes. Annu Rev Nutr. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. 2010 Aug 21;30:291-314. http://www.ncbi.nlm.nih.gov/pubmed/20420525
14. Knight A, Leitsberger M. Vegetarian versus Meat-Based Diets for Companion Animals. Animals (Basel). [Review]. 2016 Sep 21;6(9). http://www.ncbi.nlm.nih.gov/pubmed/27657139
15. Popkin BM, Du S. Dynamics of the nutrition transition toward the animal foods sector in China and its implications: a worried perspective. J Nutr. 2003 Nov;133(11 Suppl 2):3898S-906S. http://www.ncbi.nlm.nih.gov/pubmed/14672288
16. Walker P, Rhubart-Berg P, McKenzie S, Kelling K, Lawrence RS. Public health implications of meat production and consumption. Public Health Nutr. [Review]. 2005 Jun;8(4):348-56. http://www.ncbi.nlm.nih.gov/pubmed/15975179
17. Drury RAV, Wallington EA, Cameron R. Carleton's histological technique 4ed. New York: Oxford University Press; 1967.
18. Morell P, Quarles RH. Characteristic Composition of Myelin. In: Siegel GJ, Agranoff BW, Albers RW, editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia: Lippincott-Raven; 1999.
19. Jennifer T, Smilowitz J, German B, Zivkovic AM. Food Intake and Obesity: The Case of Fat. In: Montmayeur JP, le Coutre J, editors. Fat Detection: Taste, Texture, and Post Ingestive Effects. Boca Raton CRC Press/Taylor & Francis; 2010.
20. Walker HK, Hall WD, Hurst JW. Clinical Methods: The History, Physical, and Laboratory Examinations. . 3 ed. Boston: Butterworths; 1990.
21. Dasarathy S. Nutrition and Alcoholic Liver Disease: Effects of Alcoholism on Nutrition, Effects of Nutrition on Alcoholic Liver Disease, and Nutritional Therapies for Alcoholic Liver Disease. Clin Liver Dis. [Research Support, N.I.H., Extramural Review]. 2016 Aug;20(3):535-50. http://www.ncbi.nlm.nih.gov/pubmed/27373615
22. Ahmed M. Non-alcoholic fatty liver disease in 2015. World J Hepatol. [Review]. 2015 Jun 18;7(11):1450-9. http://www.ncbi.nlm.nih.gov/pubmed/26085906
23. Neuman MG, Cohen LB, Nanau RM. Biomarkers in nonalcoholic fatty liver disease. Can J Gastroenterol Hepatol. [Research Support, Non-U.S. Gov't Review]. 2014 Dec;28(11):607-18. http://www.ncbi.nlm.nih.gov/pubmed/25575111
24. Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 2016 Sep;5(9):782-94. http://www.ncbi.nlm.nih.gov/pubmed/27617201
25. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Blendis L, Halpern Z, et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol. [Research Support, Non-U.S. Gov't]. 2007 Nov;47(5):711-7. http://www.ncbi.nlm.nih.gov/pubmed/17850914
26. Agius L. High-carbohydrate diets induce hepatic insulin resistance to protect the liver from substrate overload. Biochem Pharmacol. [Research Support, Non-U.S. Gov't]. 2013 Feb 1;85(3):306-12. http://www.ncbi.nlm.nih.gov/pubmed/23022226
27. Colak Y, Tuncer I, Senates E, Ozturk O, Doganay L, Yilmaz Y. Nonalcoholic fatty liver disease: a nutritional approach. Metab Syndr Relat Disord. [Review]. 2012 Jun;10(3):161-6. http://www.ncbi.nlm.nih.gov/pubmed/22394108
28. Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. 2014 Apr;36(4):359-71. http://www.ncbi.nlm.nih.gov/pubmed/24431278
29. Mu Y, Yan WJ, Yin TL, Yang J. Curcumin ameliorates highfat dietinduced spermatogenesis dysfunction. Mol Med Rep. 2016 Oct;14(4):3588-94. http://www.ncbi.nlm.nih.gov/pubmed/27600729
30. Sohrabi M, Hosseini M, Inan S, Alizadeh Z, Vahabian M, Vahidinia AA, et al. Effect of Antioxidants on Testicular iNOS and eNOS after High-Fat Diet in Rat. Pak J Biol Sci. 2017;20(6):289-97. http://www.ncbi.nlm.nih.gov/pubmed/29023053
31. Stanley WC, Dabkowski ER, Ribeiro RF, Jr., O'Connell KA. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res. [Research Support, N.I.H., Extramural Review]. 2012 Mar 2;110(5):764-76. http://www.ncbi.nlm.nih.gov/pubmed/22383711
32. Sahraoui A, Dewachter C, de Medina G, Naeije R, Aouichat Bouguerra S, Dewachter L. Myocardial Structural and Biological Anomalies Induced by High Fat Diet in Psammomys obesus Gerbils. PLoS One. [Research Support, Non-U.S. Gov't]. 2016;11(2):e0148117. http://www.ncbi.nlm.nih.gov/pubmed/26840416
33. Altunkaynak ME, Ozbek E, Altunkaynak BZ, Can I, Unal D, Unal B. The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. J Anat. 2008 Jun;212(6):845-52. http://www.ncbi.nlm.nih.gov/pubmed/18510511
34. Fan YY, McMurray DN, Ly LH, Chapkin RS. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr. [Research Support, U.S. Gov't, P.H.S.]. 2003 Jun;133(6):1913-20. http://www.ncbi.nlm.nih.gov/pubmed/12771339
35. Svahn SL, Varemo L, Gabrielsson BG, Peris E, Nookaew I, Grahnemo L, et al. Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids. PLoS One. [Research Support, Non-U.S. Gov't]. 2016;11(5):e0155099. http://www.ncbi.nlm.nih.gov/pubmed/27166587
36. Teague H, Fhaner CJ, Harris M, Duriancik DM, Reid GE, Shaikh SR. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J Lipid Res. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2013 Nov;54(11):3130-8. http://www.ncbi.nlm.nih.gov/pubmed/23986558
37. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. 2001 May 18;276(20):16683-9. http://www.ncbi.nlm.nih.gov/pubmed/11278967
38. Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. [Research Support, N.I.H., Extramural Review]. 2006;34(5):455-65. http://www.ncbi.nlm.nih.gov/pubmed/17067939
39. Federico A, D'Aiuto E, Borriello F, Barra G, Gravina AG, Romano M, et al. Fat: a matter of disturbance for the immune system. World J Gastroenterol. [Review]. 2010 Oct 14;16(38):4762-72. http://www.ncbi.nlm.nih.gov/pubmed/20939104
How to Cite
SALIH, Khalid M et al. Histological impact of nutritional style alteration in mice. Journal of Contemporary Medical Sciences, [S.l.], v. 5, n. 2, apr. 2019. ISSN 2413-0516. Available at: <http://www.jocms.org/index.php/jcms/article/view/571>. Date accessed: 16 june 2019.